Immediate (deductive) inference

•
$A \vdash \overline{T}$ For example, All snakes are poisonous implies some snakes are poisonous (assuming the subject satisfies the condition of existential import—at least one instance of the subject exists)
A ⊢ ~(0)
A ⊢ ~(E)
E⊢O
I ⊢ ~(E)
~(A) ⊢ O
~(E) ⊢ I
~(I) ⊢ E
~(I) ⊢ O
~(O) ⊢ A
~(O) ⊢ I
E ⊢ ~(A)
E ⊢ ~(I)
~(I) ⊢ ~(A)
O ⊢ ~(A)
~(O) ⊢ ~(E)
→ means "does not imply or entail, or cannot be deduced from". I.e., Given that it is not the case that All S is P, one cannot deduce that No S is P. The fact that "it is not the case that All men are Italian" does not permit us to conclude that No men are Italian.
\sim (A) \dashv E (E is not deducible from \sim (A), but remains unknown).
\sim (A) \dashv I (If we know it is false that all men are geniuses, we do not thereby know that some men are geniuses)
\sim (E) \dashv A (If we know that it is false that no men are geniuses, we do not thereby know that all men are geniuses)
\sim (E) \dashv O (and we do not thereby know that some men are not geniuses; they could all be geniuses for all we know)
I → A (knowing that some men are geniuses does not tell us whether or not all men are geniuses)
I → O (knowing that some men are geniuses does not tell us whether some men are not geniuses)

O → E (knowing that some men are not geniuses does not tell us whether no man is a genius)

O - I (knowing that some men are not geniuses does not tell us that some men are geniuses)